

django-spark - Event sourcing and handling

[image: _images/django-spark.png]
 [https://travis-ci.org/matthiask/django-spark]Version 0.3

This is not supposed to be real documentation; it’s more a reminder for
myself.

The idea is that there are event sources and event handlers. Event
sources may create a stream of spark.api.Event instances, where each
event must have a group and a key. Additional data may be added
to the Event as well. Keys are globally unique – events with the
same key are still only processed exactly once. Groups are used to
determine which handlers handle a certain event.

Event handlers are functions which are called once per
spark.api.Event instance if the event’s group matches the event
handler’s regex.

Some usage example code

Given a challenge, create events for the challenge (the specifics do not
matter):

from datetime import date
from spark import api

def events_from_challenge(challenge):
 if not challenge.is_active:
 return

 yield {
 "group": 'challenge_created',
 "key": 'challenge_created_%s' % challenge.pk,
 "context": {"challenge": challenge},
 }

 if (date.today() - challenge.start_date).days > 2:
 if challenge.donations.count() < 2:
 yield {
 "group": 'challenge_inactivity_2d',
 "key": 'challenge_inactivity_2d_%s' % challenge.pk,
 "context": {"challenge": challenge},
 }

 if (challenge.end_date - date.today()).days <= 2:
 yield {
 "group": 'challenge_ends_2d',
 "key": 'challenge_ends_2d_%s' % challenge.pk,
 "context": {"challenge": challenge},
 }

 if challenge.end_date < date.today():
 yield {
 "group": 'challenge_ended',
 "key": 'challenge_ended_%s' % challenge.pk,
 "context": {"challenge": challenge},
 }

Send mails related to challenges (uses django-authlib’s
render_to_mail):

from authlib.email import render_to_mail

def send_challenge_mails(event):
 challenge = event["context"]["challenge"]
 render_to_mail(
 # Different mail text per event group:
 "challenges/mails/%s" % event["group"],
 {
 "challenge": challenge,
 },
 to=[challenge.user.email],
).send(fail_silently=True)

Register the handlers:

class ChallengesConfig(AppConfig):
 def ready(self):
 # Prevent circular imports:
 from spark import api

 api.register_group_handler(
 handler=send_challenge_mails,
 group=r'^challenge',
)

 Challenge = self.get_model('Challenge')

 # All this does right now is register a post_save signal
 # handler which runs the challenge instance through
 # events_from_challenge:
 api.register_model_event_source(
 sender=Challenge,
 source=events_from_challenge,
)

Now, events are generated and handled directly in process.
Alternatively, you might want to handle events outside the
request-response cycle. This can be achieved by only registering the
model event source e.g. in a management command, and then sending all
model instances through all event sources, and directly processing those
events, for example like this:

from spark import api

api.register_model_event_source(...)

Copied from the process_spark_sources management command inside
this repository
for model, sources in api.MODEL_SOURCES.items():
 for instance in model.objects.all():
 for source in sources:
 api.process_events(api.only_new_events(source(instance)))

	Documentation [https://django-spark.readthedocs.io]

	Github [https://github.com/matthiask/django-spark/]

Change log

Next version [https://github.com/matthiask/django-spark/compare/0.3...master]

0.3 [https://github.com/matthiask/django-spark/compare/0.2...0.3] (2018-10-29)

	Changed API events to be dictionaries instead of
types.SimpleNamespace objects. The top level of the dictionary
normally contains key and group keys used by django-spark and
an additional context dictionary with arbitrary data.

	Added a new Event.objects.create_if_new queryset method which
understands event dictionaries.

	Added a new spark.spark_generators app for configuring spark
generators using Django’s administration interface.

	Changed the API contract for sources and sinks: Sources and sinks are
both NOT responsible for only letting new events through. A new
spark.api.only_new_events filtering iterator has been added which
only yields events that haven’t been seen yet.

	Added a new spark.spark_mails app for transactional mails.

0.2 [https://github.com/matthiask/django-spark/compare/0.1...0.2] (2018-10-16)

	Reformatted the code using black.

	Added a testsuite and some documentation.

0.1 [https://github.com/matthiask/django-spark/commit/4b8747afd] (2017-12-19)

	Initial public version.

Index

 nav.xhtml

 Table of Contents

 		
 django-spark - Event sourcing and handling

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_images/django-spark.png
“build passing

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

