

django-spark - Event sourcing and handling

[image: _images/django-spark.png]
 [https://travis-ci.org/matthiask/django-spark]Version 0.3-22-g9377e20

This is not supposed to be real documentation; it’s more a reminder for
myself.

The idea is that there are event sources and event handlers. Event
sources may create a stream of spark.api.Event instances, where each
event must have a group and a key. Additional data may be added
to the Event as well. Keys are globally unique – events with the
same key are still only processed exactly once. Groups are used to
determine which handlers handle a certain event.

Event handlers are functions which are called once per
spark.api.Event instance if the event’s group matches the event
handler’s regex.

Some usage example code

Given a challenge, create events for the challenge (the specifics do not
matter):

from datetime import date
from spark import api

def events_from_challenge(challenge):
 if not challenge.is_active:
 return

 context = {"challenge": challenge}

 yield api.event("challenge_created", challenge.pk, context)

 if (date.today() - challenge.start_date).days > 2:
 if challenge.donations.count() < 2:
 yield api.event("challenge_inactivity_2d", challenge.pk, context)

 if (challenge.end_date - date.today()).days <= 2:
 yield api.event("challenge_ends_2d", challenge.pk, context)

 if challenge.end_date < date.today():
 yield api.event("challenge_ended", challenge.pk, context)

Send mails related to challenges (uses django-authlib’s
render_to_mail):

from authlib.email import render_to_mail

def send_challenge_mail(event):
 challenge = event["context"]["challenge"]
 render_to_mail(
 # Different mail text per event group:
 "challenges/mails/%s" % event["group"],
 {
 "challenge": challenge,
 },
 to=[challenge.user.email],
).send(fail_silently=True)

Register the handlers:

from spark import api

class ChallengesConfig(AppConfig):
 def ready(self):
 api.register_group_handler(
 handler=send_challenge_mail,
 group=r'^challenge',
)

 Challenge = self.get_model('Challenge')

 # All this does right now is register a post_save signal
 # handler which runs the challenge instance through
 # events_from_challenge and processes the events:
 api.register_model_event_source(
 sender=Challenge,
 source=events_from_challenge,
)

Now, events are generated and handled directly in process.
Alternatively, you might want to handle events outside the
request-response cycle. This can be achieved by only registering the
model event source e.g. in a management command, and then sending all
model instances through all event sources, and directly processing those
events, for example like this:

from spark import api

api.register_model_event_source(...)

Copied from the process_spark_sources management command inside
this repository
for model, sources in api.MODEL_SOURCES.items():
 for instance in model.objects.all():
 for source in sources:
 api.process_events(api.only_new_events(source(instance)))

	Documentation [https://django-spark.readthedocs.io]

	Github [https://github.com/matthiask/django-spark/]

Change log

Next version [https://github.com/matthiask/django-spark/compare/0.3...master]

	Added a spark.api.event helper for creating events.

	Moved all imports in the spark.api module into the functions using
them so that the module can always be imported early during startup.

	Decoupled the generators API from Generator model instances.
Documentation will be written after some additional real world
testing [https://406.ch/writing/writing-documentation/].
events_from_generators now accepts a list of generator
descriptions instead of a generator queryset. The .as_generators()
queryset method easily allows creating a suitable generator
description.

	Separated EmailMessage generation from sending in the
spark_mails API and made mail sending not fail silently by
default.

	Fixed a bug where an empty template would crash the mail rendering.

	Rewrote the Travis CI configuration to make jobs explicit, added newer
Django and Python versions to the matrix.

0.3 [https://github.com/matthiask/django-spark/compare/0.2...0.3] (2018-10-29)

	Changed API events to be dictionaries instead of
types.SimpleNamespace objects. The top level of the dictionary
normally contains key and group keys used by django-spark and
an additional context dictionary with arbitrary data.

	Added a new Event.objects.create_if_new queryset method which
understands event dictionaries.

	Added a new spark.spark_generators app for configuring spark
generators using Django’s administration interface.

	Changed the API contract for sources and sinks: Sources and sinks are
both NOT responsible for only letting new events through. A new
spark.api.only_new_events filtering iterator has been added which
only yields events that haven’t been seen yet.

	Added a new spark.spark_mails app for transactional mails.

0.2 [https://github.com/matthiask/django-spark/compare/0.1...0.2] (2018-10-16)

	Reformatted the code using black.

	Added a testsuite and some documentation.

0.1 [https://github.com/matthiask/django-spark/commit/4b8747afd] (2017-12-19)

	Initial public version.

Index

 nav.xhtml

 Table of Contents

 		
 django-spark - Event sourcing and handling

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_images/django-spark.png
“build passing

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

